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Abstract: Optical bistabilities have been considered to be useful for sensor applications. As a typical 
nonlinear device, Fabry-Perot semiconductor optical amplifiers (FPSOAs) exhibit bistability under 
certain conditions. In this paper, the bistable characteristics in FPSOAs are investigated theoretically. 
Based on Adams’s relationship between the incident optical intensity Iin and the z-independent 
average intracavity intensity Iav, an analytical expression of the bistable loop width in SOAs is 
derived. Numerical simulations confirm the accuracy of the analytical result. 
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1. Introduction 

Optical bistability (OB) has been found to be a 

beneficial technology for designing optical sensors 

[1–2]. It is well known that Fabry-Perot 

semiconductor optical amplifiers (FPSOAs) can 

operate in a bistable regime with proper parameters. 

Therefore, further studies on bistability of FPSOAs 

are worthwhile from a practical point of view. In [3], 

the authors presented a commonly-used model for 

investigating the bistability in SOAs. By use of this 

model, the static and dynamic bistable 

characteristics in different types of SOAs have been 

investigated substantially [3–8]. However, these 

studies have been performed either numerically or 

experimentally. So far, few analytical results on the 

bistability in SOAs have been presented. In this 

paper, based on Adams’s model [3], the necessary 

condition for bistability in SOAs is deduced. 

Moreover, analytical expressions of the switch-up 

power, switch-down power of the incident beam, 

and the width of hysteresis loop in SOAs are derived. 

Numerical calculations are carried out to verify the 

analytical results. 

The remainder of this paper is organized as 

follows. Section 2 gives detailed derivations of the 

necessary condition for bistability and the 

expression of hysteresis loop width in an FPSOA. 

Section 3 affords the numerical experiments to 

verify the correctness of the analytical results. 

Discussion and conclusions are provided in  

Section 4. 

2. Theoretical analysis 

Considering an SOA, it is assumed that in the 

cavity the optical intensity is uniform and the 

spontaneous emission is neglected. In the following, 

the analysis is carried out according to the 

relationships derived by Adams [3], in which the 

input intensity Iin, the output intensity Iout, and the 
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z-independent intracavity intensity Iav could be 

expressed as follows. 
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where R1 and R2 are the reflectivities of the two 

cavity mirrors, g is the net gain per unit length, ϕ is 

the single-pass phase change, and L is the cavity 

length. In the steady state, g and ϕ can be expressed 

as 
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where Γ is the optical confinement factor,  is the 

effective loss coefficient, g0 is the unsaturated 

material gain, ϕ0 is the initial phase detuning, Is is 

the saturation optical intensity, b is the linewidth 

enhancement factor, n is the carrier density, a is the 

gain coefficient, and n0 is the carrier density at 

transparency. 

From (1) to (5), the input-output (IO) hysteresis 

loop can be observed by numerical simulation under 

certain parameter values [3]. In this paper, we 

analytically calculate the bistability in SOAs. From 

the numerical results and the definition of the 

bistability, it is obvious that in the bistable operation 

region, for a given input intensity Iin, there are three 

corresponding solutions of the output intensity Iout to 

(1)–(5). Namely, one is the unstable-state solution, 

and the other two are the stable-state solutions. 

Equation (2) shows that Iout is a single valued 

function of Iav. Thereby, it can be inferred that in the 

region where the hysteresis loop appears, there exist 

three values of Iav corresponding to one value of Iin. 

To ensure this feature, the function Iin(Iav) should 

have two extreme values in this region. Hence, from 

the mathematical point of view, the necessary 

condition for bistability of SOA is that the 

first-order derivative of the function Iin(Iav) should 

have two zero points. 

From (1) and (2), one can obtain the relationship 

between Iin and Iav: 
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For convenience, let x = Iav/Is, y = Iin/Is. Then (6) 

can be rewritten as 
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where G=exp(gL) represents the single pass gain in 

the cavity. 

Clearly, (7) owns a complicated form, which 

makes it difficult to obtain the zero point of the 

first-order derivative of y. In order to theoretically 

find the necessary condition for the occurrence of 

hysteresis loop of SOAs and further achieve 

analytical results on the bistability, some 

approximations are demanded to simplify the form 

of (7). Naturally, the right hand of (7) can be 

expanded into Taylor series in terms of x. Since we 

try to examine whether the first-order derivative of y 

has two zero points, it is reasonable that three-order 

approximation of the Taylor series of y is adopted. 

Thus y can be rewritten as follows: 
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the ith order derivatives of y at the reference point 

x=x0. In the following, (8) is a start point for further 

deduction and analysis. After straight and complex 

computation, the coefficients in (8) can be derived in 

the following form: 
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The selection of the reference point x0 for the 

Taylor series expansion is of importance as well. 

Here more attention should be paid to the fact that 

the bistability in SOA occurs at the long wavelength 

side of the cavity resonance wavelength, as pointed 

out by aforementioned literatures [3, 6]. Therefore, 

it can be inferred that in the region that bistability 

occurs the phase detuning factor ϕ is negative. This 

characterizes the interval of x in which we want to 

examine the feature of the first order derivative of y. 

Of course, the reference point should be chosen such 

that the phase detuning factor is less than zero. In 

this paper, x0 is taken as half of the point at which ϕ 

is equal to 0. Using (4), it can be derived as 
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Substitute (9)–(12) into (8), y is re-expressed as 

a cubic function of x. Differentiating both sides of 

(8), we can get 
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Let (13) equal to 0, then a quadratic equation is 
achieved in the form 
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which owns the discriminant Δ as 
2
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Equation (14) would own two real roots when Δ 

is greater than 0. Thus the necessary condition for 

bistability of SOAs can be described as  
2

2 1 3 0F F F     .           (16) 

When this condition is satisfied, an IO hysteresis 

loop can be acquired. Next, based on the above 

results, we would derive the analytical expression of 

the hysteresis loop width. 

When Δ>0, the two real roots of (14) are  
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Substitute (17) and (18) into (7), the switch-up 

power Pup and switch-down power Pdown of the input 

beam for the hysteresis loop in the SOA can be 

easily obtained: 
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where G1 and ϕ1 denote the values of G and ϕ at 

x=x1, G2 and ϕ2 denote the values of G and ϕ  at 

x=x2, and Ain represents the area of the input beam. 

Combining (19) and (20), we can derive the bistable 

loop width H as 

up downH P P  .              (21) 

3. Numerical simulations 

In the numerical simulation, the parameter 

values are taken as follows, Ain=0.8 μm2, L=500 μm, 

R1=R2=0.3, n0=1.5×1024
 m3, a=2.7×1020

 m2, 

α=1000 m1, b=4.8, and Γ=0.1. Figs. 1 and 2 plot the 

dependence of Δ on the initial phase factor and the 

normalized carrier concentration, respectively. 

According to the above derived criterion for the 

occurrence of hysteresis, when Δ is greater than 0, 

the bistable loop could be found. In Fig. 1, it can be 

seen that Δ is positive when ϕ0 is in the interval 

[0.78π, 0.18π] as the normalized carrier 

concentration is 0.95. Further numerical simulations 

are carried out under the same parameters, which 

show that in this interval the SOA would appear the 

bistable behaviors. Similarly, Fig. 2 reveals that if 

the normalized carrier density is greater than 0.88, Δ 

is positive when the initial phase detuning factor ϕ0 

is 0.22π. Numerical calculations also exhibit that 

just in this region the bistable loop can be observed. 

All these confirm the effectiveness of the derived 

criterion (16) for the hysteresis in the SOAs.  

Figure 3 displays the numerical and analytical 

results of the switch-up power as a function of the 

normalized carrier concentration for various initial 

phase detuning factors. Obviously, the discrepancy 

between the simulations and the derived formulae is 

negligible. Moreover, it can be seen that Pup 

dwindles as the carrier density increases, and with 

the enhancement of the initial phase detuning, Pup 

rises up drastically. In Fig. 4, the tendency of the 

switch-down power Pdown is plotted, as the 

normalized carrier concentration grows up for 

various initial phase detuning factors. The analytical 

results show a good agreement with the numerical 

ones. Furthermore, Pdown possesses a similar 

tendency to Pup, when the carrier concentration or 

the initial phase detuning factor increases. In Figs. 5 

and 6, the bistable loop width is shown as a function 

of the normalized carrier density and the initial 

phase detuning factors, respectively. It is observed 

that analytical calculations are slightly smaller than 

numerical simulations. Meanwhile, the hysteresis 

loop becomes wider with the increment of either the 

carrier density or the initial phase detuning factor. 
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Fig. 1 Dependence of Δ on the initial phase detuning factor 
ϕ0, n/nth=0.95. 
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Fig. 2 Dependence of Δ on the normalized carrier 
concentration n/nth, ϕ0= –0.22π. 
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Fig. 3 Jump-up power Pup versus normalized carrier density 
n/nth for three cases: (a) ϕ0= –0.22π, (b) ϕ0=–0.42π, and (c) ϕ0= 
–0.62π (The solid lines and the symbols represent the numerical 
simulations and the analytical results, respectively).  
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Fig. 4 Comparison between analytical and numerical results 
of the jump-down input power Pdown for three cases: (a) ϕ0= 
–0.22π, (b) ϕ0= –0.42π, and (c) ϕ0= –0.62π (Other parameters 
are the same as Fig. 3). 
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Fig. 5 Bistable loop width as a function of the normalized 
carrier density n/nth for three cases: (a) ϕ0= –0.22π, (b) ϕ0= 
–0.42π, and (c) ϕ0= –0.62π (The solid lines and the symbols 
represent the numerical simulations and the analytical results, 
respectively). 
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Fig. 6 Analytical and numerical results of bistable loop width 
as a function of the initial phase detuning factor ϕ0 for four cases: 
(a) n/nth=0.97, (b) n/nth=0.95, (c) n/nth=0.93, and (d) n/nth=0.91. 

4. Conclusions 

In summary, based on Adams’s relationship 

between the z-independent intracavity intesnsity Iav 

and the incident intensity Iin in an SOA, we deduce 

the criterion for the hysteresis in SOAs by 

expanding Iin as a Taylor series in terms of Iav. As a 

result, the analytical expressions of the switch-up 

power, the switch-down power of the incident beam, 

and the width of the hysteresis loop in SOAs are 

derived for the first time. Numerical simulations are 

performed to test the effectiveness of the criterion 

and the accuracy of the expressions. The 

comparisons reveal that our analytical formulae are 

in good agreement with the numerical results. These 

conclusions would afford a valuable way for future 

investigations into the bistability in SOAs and other 

devices with a similar structure. 
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